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Exact CTP renormalization group equation for the coarse-grained effective action
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We consider a scalar field theory in Minkowski spacetime and define a coarse-grained closed time path
(CTP) effective action by integrating quantum fluctuations of wavelengths shorter than a critical value. We
derive an exact CTP renormalization group equation for the dependence of the effective action on the coarse-
graining scale. We solve this equation using a derivative expansion approach. Explicit calculation is performed
for the A ¢* theory. We discuss the relevance of the CTP average action in the study of nonequilibrium aspects
of phase transitions in quantum field thedr$0556-282196)00722-9

PACS numbd(s): 11.10.Hi

[. INTRODUCTION the quantum mean value of the field in a spatial volume of
the size of the domain

The study of phase transitions in quantum field theory is In previous works, this problem has been addressed using
of great interest in cosmology and particle physics. Cosmodifferent approaches. On the one hand, phase transitions
logical inflationary models[1-3], the electroweak phase have been analyzed using the CTP effective action, assuming
transition [4,5], and the formation of chiral condensates that the order parameter depends only on time. Presumably,
[6—8] are clear examples of the very interesting problemshis time-dependent function describes the dynamics of the
related to phase transitions in this context. order parameter inside one typical dom§fl2]. It has been

The first analyses of phase transitions in quantum fielshown that domain growth is an effect characterized by the
theory were based on the use of the finite temperature Effeq?apid evolution Of(exponentia”y unstab}dong Wave|ength
tive potential. The effective potential is useful only in quasi-modes. Such a dynamics can be nonperturbatively described

static situations and, therefore, one must use the complei), 3 Hartree approximation to the two-point correlation
effective action in order to address the nonequilibrium ass,ction [13]. On the other hand, phenomenological

pects of the transition. . Langevin-like equations which account for dissipation and
The usual effective action is not adequate to study initial, yice haye been proposed and numerically solgee Ref.
value problems since it gives the evolution equations for[14] for one such type of calculation, where the order param-

In-out” matrix elements .Of the background .f|elds. The eter is coupled to a thermal bath and a Markovian Langevin
equations for these matrix elements are neither real not

causal. The solution to this problem is to use the so-calle&qu.a“og IS put ffor;/vargi n r?rdert to n.l'g'c thermal phase
“in-in” or closed time path (CTP) effective action, intro- mixing during a first-order phase transitjon

duced by Schwinger and Keldysh many years E@jo This _In this paper, as a step towards a firs_t princip_le calcu!a-
action gives real and causal evolution equations for the “in-ion: we will proceed using an analogy with what is done in

in” mean value of the background fields. The CTP effectivethe context of condensed matfer5]. We will coarse grain

_1 . .
action has been used to analyze inflationary models, anisofU" theory up to a length scale” * comparable to the initial

ropy dissipation in the early Universe, the backreaction probrc’Ize of a typical domain. In this way, we will define a

lem in semiclassical and stochastic gravity, the quantum t“coqrsE—grr]alned elffgcuve qcthn’(Cr?EhA), \lNh'r?h will bde f
classical transition in quantum Brownian motion and Quan-Pasically the usual CTP action in which only those modes o

tum Field Theory, etc[10,11]. the scalar field withq|> A are integrated out. As a result of

There is, however, one aspect that, to our knowledge, ha§acing the short wavelength modgke so-called “environ-
not been fully investigated. Phase transitions occur via théhental” degrees of freedomthe CTP average action, which
formation and growth ofpatial domains. Inside these do- depends on the long wavelength modt® so-called “sys-
mains, the order parameter of the transition evolves dynamiem” degrees of freedom develops dissipation and noise
cally, and one is usually interested in computing its temporal€rms.

evolution. The order parameter is, therefdies average of We will derive an exact evolution equation for the depen-
dence of the CGEA on the coarse-graining scale. In prin-

ciple, it is possible to derive a Langevin equation for the long

*Electronic address: dalvit@df.uba.ar wavelength order parametei(x,t) starting from the CGEA.
"Electronic address: fmazzi@df.uba.ar However, in order to make the analysis more tractable, here
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we will compute the CTP average action using some simpl@ction has an imaginary part, related to noise, and a real part,

approximations. The major approximation we will make is torelated to dissipation. The equations of motion derived from

ignore spatial correlations between different domains. Thist are, however, real and causal.

allows the study of the dynamics for coarse-grained, time- An exact calculation of the above-defined action is quite

dependent configurations(t) inside a given domain. difficult, and it is, therefore, necessary to use approximation
The paper is organized as follows: in Sec. Il we define themethods. One possible approach is to make perturbations in

CGEA and compute it in the one-loop approximation, mak-the coupling constark [18]. Another possibility that we will

ing an adiabatic expansion. We should mention that by usingxplore here is to use a loop expansion. In the one-loop

such approximations we are not aiming at studying domaimmpproximation our effective action can be written as

growth since, as we have already stated, they fail to describ8, (¢, ,¢_)=Su(d.)—Su(Pp_)+AS\ (P, ), where

such a dynamical process. Rather, our intention is to illusthe last term is linear ir.

trate a simple calculation of the CTP effective action. In Sec. As mentioned in Introduction, we shall be concerned with

I1l we derive the exact renormalization grotRG) equation  background configurations that depend only on tigng(t).

for the evolution of the CGEA, which is a generalization to We split the complete fieldp.— ¢ (t)+ ¢, where the

CTP of the Euclidean Wegner and Houghton's RG equatioR|yctuationse.. contain spatial modes witlg|> A . Note that

[16]. Using a derivative expansion, in Sec. IV we reduce thi . 3 .
. . : . < -
functional equation to a system of coupled differential equa%-Ne are assuming that the only mode wjj<A is the spa

tions, which are then numerically solved. The interest of théi@l homogeneous oney=0). The one-loop correction is
results is not only restricted to nonzero coarse-graining

scales, but also to provide nonperturbative approximations tiAs, (4. (.4 () — H Dl 1D[¢_]
standard A =0) quantum field theory. In Sec. V we make Ao>lgl>A
the conclusions. ) 3
In order to make contact with related works, we would Xex;{l—f dtf dq
like to mention that the CGEA defined here was originally 2 (2m)3
introduced in Ref[17] in order to study inflationary cosmol- 5 )
ogy, and it was perturbatively evaluated in Rdf8] in order « 8"Sq _ 9"Sy ”
to analyze the decoherence of the long wavelength sector of P+ 5¢+5¢+(’D+ ?- 5¢_5¢_‘P‘

the \ ¢* field theory. It is also similar in spirit to thEuclid- . 3

ean average effective action proposed ear[i£®—24. The ><exp<|— f _d q f dt
main difference between both actions is that the Euclidean 2) (2m)®
action averages the field over a spacetime volume, while our d

CTP action averages the field over a spatial volume, and it is,
therefore, more useful to study nonequilibrium situations.

In the above-mentioned works, and also in this paper, the ) o
coarse-grained or average effective action interpolates bavhere the functional derivatives are evaluate¢pat=0. The -
tween the bare theory at= A, (the ultraviolet cutoff and action for the quantum fluctuations is that of a free field with
the physical theory at the coarse-graining scale. Another pogdassMZ =V"(¢.), whereV is the potential in thebare
sibility has been recently analyzed in RR5], where an  classical action. Their spatial Fourier modes are, therefore,
effective action is defined that interpolates between thdarmonic oscillators with time-dependent frequency, namely,

: 2

Xa[‘P+€-D+_(P—(-P—]

physical theory aff =0 and the physical theory dt#0. wéyi.(t)=q2+v_”(¢i(t)) with q=|q|. The functional inte-
gral is quadratic and can be done straightforwardly. The re-
Il. THE CTP COARSE-GRAINED EFFECTIVE ACTION sult is

Let us considek ¢* field theory in Minkowski spacetime. AS,(¢_(t),¢_(t))
In order to deal with nonequilibrium scenarios we follow

Schwinger-Keldysh formulation, doubling the number of :'_f d*q
fields and imposing CTP boundary conditions. The coarse- 2 ag>la=a(27)3

grained CTP effective actioB, (¢ ,¢_) is defined as L .
XIn[g-(9,7)g+(a,T)—g.(q,T)g-(a, )], ()

iSy(by ) — s .
gion e )_jA >1\_-|!|>A Ple+(a.n] where the modes g. are solutions to g.(q,t)
° . +w§’i(t)gi(ﬁ,t)=0 satisfying CTP conditions in the past

XD[¢_(q,t)]eSe( @+ 4-) (1)  and having an arbitrary normalization in the futdivee will
present an explicit proof of Eq3) in Sec. IV].

where Sy(¢. ,¢_)=Sy(d+)—Sy(¢-). Note that a sharp Even in the one-loop approximation, the effective action

cutoff A and an ultraviolet cutoffA, have been used. The is a very complicated object and additional approximations
functional integrals over the short wavelength modes are tare needed in order to get analytic results. The simplest ap-
be computed using standard CTP boundary conditions: thproximation one can think of is the adiabatic approximation
fields ¢, and ¢_ must have only negative and positive fre- [26], in which one neglects the excitations of the quantum

guency modes, respectively, in the pasT, and match in fluctuation field due to the time dependence of the back-
the futureT. In general, the CTP coarse-grained effectiveground field¢ . (t). This approximation misses the very im-
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portant stochastic aspects of the theory. However, it will be 1 (Ao d3q V"2
useful as a warm-up and also to make contact with the Eu- ZA=3—2L (2m)3 (P+ V)52
clidean works.
We can write the mode functions as 1y AS A3
= 192772 7[(A(2)+V/r)3/2_(A2+VN)3/2 i (10)

g (a t): ;eiijt_'rdt’wq((ﬁi(t’)) (4) ) ) ) ..
= PW (b (1) (6-(1) ' While the functionZ () is finite whenA ;—«, the poten-
e tial V, (¢) diverges in the UV. In order to make contact with
: : the conventional renormalization schemes, we write the one-
where the functiondV, satis . :
a($-) fy loop bare potential asV(¢)=3(ma+om?) g2+ 1/41(\g
+ 6\) ¢*, where the renormalized mass and coupling con-

y 2
2 } ﬂ_ § % —w2 (5) stant are defined as
2|Wyq 2\ W, ar
9V, 9%V
o L T : - - MR=——7|A-¢=0, ArR=—77 11
The adiabatic approximation consists in solving this equation ag? |A=2= d¢ =0
using an expansion in derivatives of the background field.
The result is and the counterterms are
2 2
5 V" 2 Vi ] ) AR | MR ( Mg )
2_ 2 \may _ 2 om?=— —— | —+2A2+miln
Wq q +V'+ 16 q2+v// 4(q2+vu)}¢ 32772 2 0 R 4A0
V/// . 3)\2 m2
-+, 6 - _ R
PTCRERY, )¢ (6) ON==25—3| 2+ In(4A ” (12
where the ellipsis denotes higher derivative terms. Therefore, the renormalized potential is
In the one-loop and adiabatic approximations, the average
CTP effective action is, therefore, up to a surface term evalu- 1, AR 1 3\gr
ated at t=T, given by AS,(¢,,d_)=AS,(¢.) V(@) =5mad?| 1— —— |+ \pd?| 1— ——
2 647 4! 16w
—AS,\(¢_), where
1
Ao d3q +o—| —A(2A2+mE+ 1ARe?
AS\()= fdtf Fers 3072 M R 2hed?)
w2y XVAZ+ME+ § Na+ (MEt Shpd)?
2 my
|V g rw) @ A+ VAZT M2+ E Al
xIn p 13
Including the classical part, we can write the total effec- R
tive action as and the renormalized wave function renormalization is
1 . 1 N
_ _ - 2 re =
smw—f dt( Va(d)+5[1+Z5()]¢%+ ZX(d) =192 et S ang?
® 10
X|1— .
where 1 (A2+m§e+ 1 \pp?)32 (14)
1 (Ao dq - The flow with the coarse-graining scale of the effective
Va=V+3 N (27.,)3Vq2+v potentialV, and of the wave function factdt, in the one-
loop approximation follows immediately from Eq&®) and
1 AO . " 5 V/IZ (10)
=V+-— —\/A0+V” —+AS | ——5
A "
/Vu Ad_A:_m\/A2+V y
XIN(Ag+ VAG+V") — \/A2+V”K 5 AZ)
v A dZA B AS VWZ (15)
+g-In(A+ \/A2+V”)} (9) dA — 64m? (AZ+V")*%

The equation for the effective potential has been previously
and obtained in Ref[27] using a blocking procedure.
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FIG. 1. The coarse-grained effective potentfal for A,= 10, m§= 104, and\g=0.1. Solid and dotted lines are the RG-improved and
one-loop results, respectively.

The study of the potential, shows that it is possible to adequate to describe the temporal evolution of the order pa-
have a nontrivial domain structure even in the symmetricatameter neither in the vicinity ol ggg hor for A <A ggg.
phase of the theorynf>0) [27]. Indeed, for some range of As pointed out in Ref[28], the imaginary part in the
the parameters of the theory, it may happen that, althoughffective potential is a signal for instabilities towards the
m3>0, the squared bare mass is negative. In this case, tHermation of domains of size at least as great/asmzR. This
potential has a double-well structure with two symmetricalissue has been addressed using the Hartree approximation in
nonzero minima for scaled greater than a critical one Ref.[13] where it was shown that the size of the domains for
A, and has a unique minimum &t=0 for smaller values very weakly coupled theories can be much larger than the
of A (see Fig. 1 The interpretation of this fact is that the zero temperature correlation length-m2.
average field fluctuates around zero for scaJesAc_rl or
around the nonzero minima for scalesAc_,l. The sym- Ill. THE EXACT CTP RENORMALIZATION
metrical phase, therefore, contains domains of size GROUP EQUATION
gwAgrl. We remark that this phenomenon takes place in the
symmetrical phase of the theory, and should not be confusel%

with spontaneous symmetry breaki(§SB.
The approach follows that of Wegner and Houghton for Eu-
On the oth_er hand, when S5B takes pIam%{O), both . clidean spacetime. We start by writing the CGEA for a scale
the renormalized one-loop potential and wave functlonA_ SA, namely

renormalization develop an imaginary part for

A<Aggg=V— _mé— %)\Rqﬁz._These ima_ginary parts ge_nerate eiSA—sn(b1 . 6) = H D[¢+(ﬁ,t)]

nonreal terms in the equations of motion, and are artifacts of Ag>[al>A~ A

the adiabatic approximation. They have nothing to do with

the noise terms in the CTP effective action that we have X D[ p_(q,t)]eSel ¢+ ¢-1, (16)
mentioned before. It is worth noting that the wave function

renormalization diverges a% approaches\ ssgfrom above. The modes to be integrated can be split into two parts: one
This clearly shows that the adiabatic approximation is nowithin the sheIIA>|ﬁ|>A—5A and the other for modes

In this section we shall derive an exdabnperturbative
normalization group equation for the flow of the CGEA.
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with A0>|ﬁ|>A. Expanding the action in powers of the B a1 ’ e ,
modes within the shell, one has Ski X 5((9u¢+) +§¢’+
giSa—sa(d4 . b-) a1 , 1€ 5
—f X 5(0ud-) =5 7| (21)
—giSa(d+.0-) D Dl e (S1tS+Sy)
A>Id\1;[A—5A L6+ JPLo-] As before, in the functional derivatives the modes within the
i [ d% q shell are set to zero.
N - N Let h, be solutions to Eq(20), vanishing in the past and
X dt t 't ) .. .a . T
eXF{ZJ (277)3J dt(d)a( A1) #5(0.1)an) satisfying an arbitrary normalization in the future, and let

(17 qﬁ(ﬁ) be the common value the fields take in the future. We
can then write
where

— . . hy(q.t
Gald=4(6)- @y

= , d3q q 0SA a(QaT)
Sl_fdtf (ZT)3¢a(q’t)m’

We first integrate over the common valdxe(i) and then we

(22

1 " d3q . proceed with the functional integration over the fluctuations
=§f dtdt’f )7 $a(Q,t) ¢, (both are Gaussian integrals with a “source” tgrrfdne
finally gets
9°S, . . ..
X = =—p(q,t), (18) (9 h.(q,T) h (qT) A
dpa(—a,t) dp(a,t’) &A T o5A (277)3 >y = +25A
hi(a,T) h_(q,T)

the prime in the momenta integrals meaning that integration , 43 - C - -1
is restricted to the shell. In the functional derivativesSaf % d q3 (h+(?’T) h(?’T))
(which contains modes whose wave vectors safigfy< A) (2m)7 \h,(q,T) h_(q,T)
the modes within the shell are set to zero. We use the nota-

tion ( f ha(q,t) 39Sy )2 iA
X dt = = -
R ha(a,T) dea(—a,t))  20A
¢a(d t)—( d)*(q't))- g —(1 ° ) (19 A dq S
a\41,t)— > ’ ab™ 0 -1 . f , A
¢_(q,t) XIn det (A,p) + 25A dt dt 2 —&<Pa(a,'f’)
The S; term is cubic in the modes within the shell, and it
can be proved that it does not contribute in the limit XA—l(_d’t.dr t) ISy (23)
SA—0 (basically, this is because one is doing a one-loop ab T Taep(git!)

calculation for the shell modegsThe functional integrals
over the shell modes have the CTP boundary conditions. Ahe 2X2 matrix A,, has the elements
comment about the last exponential factor in ELY) is in

2
order. Usually, one discards it because it is a surface term, T T _ d__ 24 —t"8%(G+a’
but in the CTP formalism it must be kept since the boundary w(-atgLt)= ( g~ a4 Hie]alt=thoa+a’)
conditions are thatp, (q,T)=¢_(q,T) with T— for the s
modesq within the shell. L
In order to evaluate the functional integrals we split the dp(—q,1)de(q',t")
field as¢,= ¢, + ¢, and impose the boundary conditions on 5
the “classical” fields¢.., i.e., they vanish in the pastT A__(—qtqt)= 2+q2+|e S(t—t")8%q+q’)
(negative and positive frequencies, respectivelyd match dt
in the Cauchy surface at time. The fluctuationsp, vanish 5
both in the past and in the future. The classical fields are + *‘9 Sint _
solutions to do_(—q,t)de_(q',t")
d? — Jt-q’ t! Srogre o
(——2—q2)gab¢a(—&t) A (=G50 t)=A_(d =)
dt ’
S
523nt — - = > n = (24
+f dt’ R ——(—q',t')=0, (20 e+ (—q,t)de_(q',t")
ﬁ‘Pa(_Qat)&QDb(q’at’)

The primed determinant must be calculated as the product of
where we have split the CGEA aS,(¢.)=S.(¢.) the eigenvalues oA,y in a space of functions with wave
+Sni(¢p+) with vectors within the shell {—SA<|q|<A) and satisfying
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null conditions both in the past and in the future. Similar Clearly, this is not the most general form that can be imag-
conditions are to be used to evaluate the invexsg. ined for the coarse-grained action because contributions in-
The Eg.(23) is exact in the sense that no perturbativevolving mixing of both fields are not taken into account. The
approximation has so far been used. It is the main result omain drawback of this approach is, therefore, that as men-
the paper. It is similar to its Euclidean countergdi8], but  tioned in Sec. I, we miss the stochastic aspects of the theory,
involves two fields and CTP boundary conditions. It containssuch as dissipation and noise. However, the proposed form
all the information of the influence of the short wavelengthfor the CGEA will be enough for studying the renormaliza-
modes on the long wavelength ones, and should be the station group flow of real time field theories.
ing point for a nonperturbative analysis of decoherence, dis- The great technical advantage of the form equatis) is
sipation, domain formation, and out of equilibrium evolu- that the second functional derivative of the action has no
tion. crossed terms, leading to a diagonal magjy, whose deter-
minant is easily computed as the product of two determi-
IV. DERIVATIVE EXPANSION nants, one foA, . and the other foA__ . Following Ref.
) ) ~ [33], one can express both dat, . and detA__ as the
The overwhelming complexity of the exact renormaliza- product over momenta of a constdmomenta independent

tion group equation means that in practice one is compelleﬂmes the moddn(ﬁ,T) evaluated at the final tini&. There-

FO use some sort of truncation. Thg usual ones are expansionsre the last term of the exact RG equation can be written as
in the number of powers of the fieldsee Ref[29] for a '

detailed analysijsor in derivatives of then}30—32. In the Indet (A,p)=In[det (A, . )det (A__)]
following we shall make use of the derivative expansion ap-
proach. [ d%q nTh (& T (&
We will prove that, within this approach, the exact RG _f (2m)3 nth.(q,Hh-(a,T)]. (26
equation(23) admits a solution of the form ) _ )
The first and the third terms can then be cast in the form of a
Sp(py ,p_)=Sp(P,)—Sp(d_). (25 single logarithm, and we arrive at

S, i\ [’ dg L L "d®q [h.(@T) h(qn) "
Amz_mvf Wln[hf(qa-r)th(qu)_h+(q1T)h7(q1T)]+25A (277)3 (h+(a,T) h_(a,T)>

- 2
ha(a,t) S A "d%q S - S
x(fdt a(a.! A ) + Afdt dt’f qg—fA;bl(—q,t;q,t’)—Aa,. 27)
ha(a,T) dga(—a,t)) 28 (27)% 9gq(a,t) dep(—at’)

Note that the equations for the two modes andh_ [Eq.  S§'=0 and keep thep.-independent contributions t&/,

(20)] simplify considerably, since the two equations are de-agter some little algebra and functional derivations, we get
coupled[a side point: it is easy to prove the one-loop result,

Eq. (3), starting from the above equati¢27)]. What we still

have to prove is that the proposed form for the action makes Sy
the right-hand sidéRHS) of the exact RG equation split in - =
the same form. de(q,t)de(—q’,t")
Next, we make a derivative expansion of the interaction 1 d @2 .
term. As our coarse graining explicitly breaks Lorentz invari- =| —\Vy"— _(';/,22"_ Y2 ('1,_ —Z———¢pZ' +---
ance, we allow different coefficients for the temporal and 2 dt dt
spatial derivatives: namely, % 5(t—t’)6‘°’(ﬁ+ﬁ’), (29

3m(¢i):J d*X[ —V(h)+3Zs(¢) 2 —2YA(-) where the primes denote derivation with respect to the field
and the ellipsis denotes terms linear in the fluctuations. In
X(€¢:)2+-~-]- (28 this expression and hereafter, we onfimless explicitly
stated the = subscripts in the background fields. (t), in
) ) the potentialV, (¢(t)), and in the wave function factors
We expand the flleds around a time-dependent backgroun@A(d)i(t)) andY (¢ (t)). Note that the effective mass of
¢+=p. (1) +¢.(X,t) and Fourier transform in space. We the modes depends on the time-dependent background
shall solve the Eq(20) for the modes to zeroth order in the ¢(t). The equations of motion for the modég become
fluctuations, i.e., we equate terms in the equationtifothat  localized and take the form of harmonic oscillators with vari-
are independent ap..’s. Since the first functional derivative able frequency and a damping term. The boundary condi-
of the CGEA @) is linear in the fluctuationg.., we put tions to be imposed are the aforementioned CTP ones.
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If one defines new modes d¢q,t)=(1+2,)¥%h(q,t), A
the damping terms cancel out and the new modes are har- h.(q,t)=(1+2,) 2

monic oscillators with frequency

1+Y \ViA 1z .1 zZh .
AL YA L2 A e A .
1+Z, 1+Z, 4(1+Z,) 21+Z,
(30

w3(t)=0?

Using an adiabatic expansion for the modes,
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et/ Walat))dt

1
V2W.(q,t)

(31)

we can evaluate the logarithmic term in the RHS of the exact
RG equation(27). The other terms are quadratic in the fluc-
tuations and do not contribute to the order we are working.
We have

- . - - . - T - -
h_(q,T)h+(q,T)—h+(q,T)h_(q,T)=exp[ +i J_T[W+(q,t)—w_(q,t)]dt]

Z\

B 2(1+z+)¢+_ 2W,

W, }{ zZ . W
+iW, |—

B 2(1+z,)¢*_ 2vv_, _iw}

Note that, as in the one-loop case, the plus and minus fields
do decouple, up to a factor evaluated &tT. This factor is

just a surface contribution which, upon taking logarithm, is
irrelevant for the equations of motion. On the contrary, the
first factor does depend on the whole history of the fields and

is consistent with the proposal for the CGEA, E®5).
Hence, the RGE can be casted in the form

Af dt”— dValg,) 1dZ4i(¢4) .,

dA 2 dA +

dA 2 da ¢
A [ dq

“2o7) (2m) [W, (q,t)—W_(g,t)]dt.

(33

In the adiabatic expansion, thWg's read

W2=A, + By (1) + Cr (1), (34)

where the coefficients are

L1HYy V4

A=A 7 Tz

z,? 5A\% A}
Ba= 7+ 7~ ;
4(1+Z,)% 16A7 4A,

Z\ Ai

CA=21rzy A, 39

Integrating by parts, we get

2VW, W_(1+Z,)(1+Z_) -

(32

dv, 1 dz,.,
fdt —A—dA +§Ad_A
A3f 1..| By Ch\’
= | dt{ VA + 59?2 ——| =] |}.
i) A T A

(36)

Therefore, the dependence of the potential and the wave
function renormalization on the infrared scale is given by

dvy,  A° ,1+Y, V)

dA  4x? 1+2, 1+z,

dz, A®| B, C,\’ -
dA  47° VA, VA,

Remember that these equations are valid both fordhe
field and for the¢ _ field.

The above equations are the main result of this section.
They describe the flow of the coarse-grained action with the
infrared scale in the derivative expansion of the exact CTP
renormalization group equation. It is interesting to note that
the higher derivative terms modify the differential equation
for the effective potential.

We have obtained two equations for the three indepen-
dent, unknown function¥,, Z,, andY,. In order to find
an additional relation between the spatial and temporal wave
funtion renormalization functiong, andY,, it is hecessary
to write the exact RGE up to quadratic order in the fluctua-
tions. We will not present this long calculation here. For
simplicity, we will assume thaZ, andY, are small num-
bers, and therefore, we will set them to zero on the RHS of
Eq. (37). This assumption will be confirmed by the numeri-
cal calculations performed in the symmetric phase of the
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FIG. 2. The coarse-grained wave funtion renormalization for A= 10, méz 10 4, and \g=0.1. Solid and dotted lines are the
RG-improved and one-loop results, respectively.

theory. Note that in this approximation we recover the RG-the effective dynamical equations for the order parameter.

improved equation proposed in RdR7] for the coarse- These equations will be valid as long éss slowly varying

grained effective potential. andZ,<1. Therefore, as in the one-loop approximation, the
There are other points which are worth noting. The firstderivative expansion may be inadequate in the case of SSB

one is that, when we substitu¢, , Z,, andY, by their  for scales in the vicinity of and lower thakggg.

classical values/,=V, Z,=Y,=0, on the RHS of both

equations we obtain the one-loop evolution equatidas.

(15)]. The second comment is about renormalization. In the V. CONCLUSIONS

one-loop calculation it was possible to take the limit The CTP coarse-grained effective action contains all the
Ao—ce. The infinities were absorbed into the bare mass anghformation about the influence of the short wavelength sec-
coupling constant. There was no need for wave functionor on the long wavelength sector of the theory. In principle,
renormalization. However, in this nonperturbative calcula-j; s possible to derive from it a Langevin equation for the
tion it is not possible to renormalize the thedas is the case  rger parameter. This Langevin equation can be used to ana-
for Hartree, Gaussian, andNL/approximations For these |yze domain formation and growth and, in general, the non-
reasons we keefy, as a larggcompared with the magbut equilibrium aspects of phase transitions.

finite number. In this paper we have derived an exact evolution equation
As an illustration we consider theg” field theory. The  for the dependence of the CGEA with the coarse-graining
differential equations must be solved with the classical initialsca|e_ This renormalization group equat[ﬁq_ (23)] is our
conditionsV, =V, Z, =0, andY, =0. To this end we main result. We expect this equation to be a useful tool to
have written a simple code which evolves the equations frongenerate nonperturbative approximations for the CGEA.
the UV scale down to the desired IR scale. We have plotted In order to show a simple application of the exact CTP
the results in Figs. 1 and 2, where we show the differenceéenormalization group equation, we have solved it using a
between the one-loop and the RG-improved solution for thelerivative expansion. We have obtained a RG improvement
effective potential and the wave function renormalization.to the effective potentiaV, (), that coincides with the one
Note that, at least in the symmetric phase of the theory, theroposed in Ref[27], and an improvement to the one-loop
results are consistent with the assumptin<1. wave function renormalizatiod,, .
Once the function¥, andZ, are known, one can write Within the derivative expansion approach, the CGEA is
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of the form S (&, ,d_)=S\(d.)—Sr(0_), i.e., it con- we are interested in finding a nonperturbative,

tains neither dissipative nor noise terms. Only diffusive ef-A-dependent, fluctuation-dissipation relation from the exact

fects are included. As far as a calculation beyond the adisRGE. Extensions to the cases of finite temperature and

batic approximation is concerned, we expect that, as soon agirved spaces are also under investigation.

we decrease the scale frofy, dissipative and noise terms

will grow up: the CGEA will develop an imaginary part
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